Jet Measurements in Heavy Ion Collisions with an Upgraded PHENIX Detector

Dave Morrison (BNL) for the PHENIX Collaboration

An η/s compendium

Strong coupling vs weak coupling

scale dependence

Strong coupling calculations (and a bit of data)

Hydro + IQCD calculation from Kovtun, Moore, and Romatschke

arXiv:1104.1586

Hadron gas calculation from Prakash (almost 20 years ago) 1/T⁴.

Phys. Rept. 227 (1993) 321-366

Lattice QCD result from Harvey Meyer (gluodynamics)

arXiv:0704.1801

QPM, finite μ_B calculation from Shrivistava and Singh

arXiv:1201.0445

Semi-QGP calculation from Rob Pisarski

with $\kappa = 8$

arXiv:0912.0940

Ultra-cold Fermi gases from Adams, Carr, Schäfer, Steinberg, Thomas arXiv:1205.5180v1

How does the QGP evolve from strong to weak?

Is this transition associated with changes in quasi-particles, excitations, strong fields?

Complementarity of hydrodynamics and jets

Relating viscosity/entropy to transport coefficient

"Small shear viscosity implies strong jet quenching" A. Majumder, B. Muller, X.N. Wang, PRL (2007)

valid for weak coupling – measure both to explore transition from weak to strong coupling

Relating viscosity/entropy to transport coefficient

"Small shear viscosity implies strong jet quenching" A. Majumder, B. Muller, X.N. Wang, PRL (2007)

valid for weak coupling – measure both to explore transition from weak to strong coupling

Many possibilities for $\hat{q}(T)$ near T_c

PRL **102**, 202302 (2009)

PHYSICAL REVIEW LETTERS

22 MAY 2009

Jinfeng Liao^{1,2,*} and Edward Shuryak^{1,†}

"[We find] the jet quenching is a few times stronger near T_c relative to the QGP at $T > T_c$."

What is the nature of the strongly coupled QGP?

- How does the strongly coupled quark-gluon plasma emerge from an asymptotically free theory of quarks and gluons?
- How rapidly does the quark gluon-plasma transition from the most strongly coupled system near T_c to a weakly coupled system of partons?
- What are the dynamical and other underlying changes to the medium as one crosses this temperature expanse?
 - quasi-particles? excitations? other?

Theoretical guidance on observables/sensitivity

The theoretical bridgework needed to connect measurement to the interesting and unknown medium properties of deconfined color charges is under active construction by many theorists

Just one example: March 3-4, 2012 Jet Collaboration meeting at Duke University

Lots of interest from theory community

Follow up EVO meetings.

Sensitivity to coupling strength

Comparison to LHC data

Sensitivity to α_s at RHIC energies

Chris Coleman-Smith (Duke)

Radiative and collisional energy loss

What are the effective constituents of the QGP?

Radiative energy loss only

s=200 GeV central Au+Au R=0.6 E_T>50 GeV, E_>10 GeV

Radiative + Collisional energy loss ±10% changes in coupling strength

Ivan Vitev, et al

Interaction of jet with medium

Jet rates in Au+Au at RHIC

1 RHIC year = 50 billion min. bias Au+Au events = 10 billion central

Expected counts in a 20 week run

	Au+Au central 20%	p+p	d+Au
>20 GeV	10 ⁷ jets 10 ⁴ photons	10 ⁶ jets 10 ³ photons	10 ⁷ jets 10 ⁴ photons
>30 GeV	10 ⁶ jets 10 ³ photons	10 ⁵ jets 10 ² photons	10 ⁶ jets 10 ³ photons
>40 GeV	10 ⁵ jets	10 ⁴ jets	10 ⁵ jets
>50 GeV	10 ⁴ jets	10 ³ jets	10 ⁴ jets

Huge rates allow differential measurements with geometry

 $(v_2, v_3, A+B, U+U, ...)$ precise control measurements (d+Au & p+p). Over 80% as dijets into $|\eta|<1$

Cu+Au ~ Au+Au/5 U+U (tip-tip) ~ Au+Au/500

Are jets in HI at RHIC dominated by fakes?

Are jets in HI at RHIC dominated by fakes?

Jet - Underlying Event Separation Method for Heavy Ion Collisions at the Relativistic Heavy Ion Collider

J. A. Hanks¹, A. M. Sickles², B. A. Cole³, A. Franz², M. P. McCumber⁴, D. P. Morrison²,
J. L. Nagle⁴, C. H. Pinkenburg², B. Sahlmueller¹, P. Steinberg², M. von Steinkirch¹, M. Stone⁴

¹ Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA

² Physics Department, Brookhaven National Laboratory, Upton, New York, 11973-5000

³ Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA and

⁴ University of Colorado, Boulder, Colorado 80309, USA

(Dated: March 8, 2012)

Are jets in HI at RHIC dominated by fakes?

J. A. Hanks¹, A. M. Sickles², B. A. Cole³, A. Franz², M. P. McCumber⁴, D. P. Morrison²,

J. L. Nagle⁴, C. H. Pinkenburg², B. Sahlmueller¹, P. Steinberg², M. von Steinkirch¹, M. Stone⁴

¹ Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA

² Physics Department, Brookhaven National Laboratory, Upton, New York, 11973-5000

³ Columbia University, New York, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA and

⁴ University of Colorado, Boulder, Colorado 80309, USA

(Dated: March 8, 2012)

Over 1 billion HIJING events run, tagging of fragmentation call jets, with full "ATLAS style" background subtraction method employed

Clean jets above an R-dependent E_T lower bound

Clean jets above an R-dependent E_T lower bound

Clean jets above an R-dependent E_T lower bound

Unfolding the effects of detector smearing

Pythia jets plus underlying central Au+Au event plus detector smearing

use Roounfold Iterative Bayes' method

recovers truth spectrum

jet R_{AA} to high p_T possible

Jet RAA to high pt

Guang-You Qin, private communication

Dijet asymmetry in central Au+Au at RHIC

Clean trigger jet above 35 GeV ⇒ away side clean down to 5 GeV

Unfolded y+jet energy ratio in central Au+Au

Full GEANT4 simulation

Major technological advances: tungsten + SiPMs

formed tungsten+epoxy with embedded fibers

How well would this new technology work?

Single particle resolution in EMCal+HCal

Consistent with experience that jet resolution in p+p ~ 1.2–1.3x HCal resolution.

jet resolution in HI ~ 1.6x HCal

Jet energy resolution from <u>full</u> GEANT4 in *p*+*p*

high rate calorimetric jet measurements at RHIC

jets, dijets, γ-jets

other very interesting possibilities: jet v_N , jet-hadron correlations

heavy quark jets: requires additional tracking beyond VTX

(expressions of interest from Japanese RIKEN)

variety of systems for control of initial state effects and geometry

together with LHC constrain physics of energy loss

novel detector concept

exploits recent technological advances

staged approach includes forward spin + p+A program

- sPHENIX has path to evolve into EIC ePHENIX

Extra slides

Heavy-flavor tagged jets (requires add'I tracking)

Full GEANT4 simulation

